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ABSTRACT

The dynamics of zonal recirculating flows (b plumes) driven by a source of potential vorticity, or a sink of
mass, located at the eastern boundary of an ocean basin are investigated using analytical solutions of the
barotropic, linear, steady quasigeostrophic equation with bottom and lateral friction.

By scaling the ratio of the strength of the recirculation to that of the sink by that from the inviscid solution,
the regimes are identified in which friction becomes a dominant factor. The primary new finding of this study
is that the recirculating flow component disappears due to frictional effects when the meridional extent of the
sink becomes small. Unlike for the zonal extent of the sink, which affects the recirculating component only if
it is on the order of the frictional boundary layer scale, the deviation of the recirculating flow strength from
that given by the inviscid solution is apparent for meridional sink scales, which are much larger than the frictional
boundary layer scale. Also, location of the maximum recirculation and westward penetration distance of the
plumes are quantified. Finally, a stability analysis is conducted to determine the parameter regime in which the
b plumes are candidates for instability.

1. Introduction

Recent studies using primitive equation (Jia 2000)
and quasigeostrophic (Özgökmen et al. 2001) general
circulation models indicate that entrainment of over-
lying Atlantic water into descending dense Mediterra-
nean overflow exiting the Strait of Gibraltar may be
responsible for the formation of the Azores Current
(Käse and Siedler 1982; Gould 1985; Käse et al. 1985;
Klein and Siedler 1989; Käse and Krauss 1996). Öz-
gökmen et al. (2001) idealized the loss of fluid from
the upper ocean as a source of potential vorticity. The
adequacy of this formulation was justified by a com-
parison of quasigeostrophic simulations with results
from a primitive equation model (the Miami Isopycnic
Coordinate Ocean Model), in which divergent flow ef-
fects associated with entrainment were explicitly rep-
resented. A localized loss of mass from the active layer
generates a cyclonic eddy that elongates westward under
the influence of the b effect. In the steady state, the
circulation pattern induced by such a process consists
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of bidirectional zonal flows: eastward to the south of
the sink and westward to the north, as described by
Pedlosky (1996).

The mechanism highlighted by Özgökmen et al.
(2001) to explain the existence of the Azores Current
therefore relies on the so-called b plume, originally pro-
posed by Stommel (1982) as a reason for the westward
extended chemical signature in the Pacific Ocean. The
primary new contribution has been recognition that
when a localized sink of scale O(100 km) and of strength
O(1 Sv [ 106 m3 s21) [consistent with observations of
the Mediterranean overflow process (Baringer and Price
1997a,b)] is placed near the eastern boundary of a mid-
latitude circulation, it alters significantly the wind-driv-
en upper ocean flow and induces an eastward zonal
current, which resembles the Azores Current in location
and transport. The b-plume mechanism necessarily gen-
erates also a westward current, which may be associated
with the so-called Azores Countercurrent, the existence
of which is supported by various observational studies
(Onken 1993; Cromwell et al. 1996; Iorga and Lozier
1999a,b). Using hydrographic data, Mauritzen et al.
(2001) show cyclonic circulation in the Gulf of Cadiz,
which maybe interpreted as the source of the Azores
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FIG. 1. Schematic illustration of sink distribution w9(x9, y9).

Countercurrent, and is an essential feature for the b-
plume mechanism to be valid.

Since the forcing associated with this b plume is
near or at the eastern boundary of the basin, it is of
interest to investigate the effect of frictional processes
on the strength of the induced recirculation. Spall
(2000) recognized that frictional terms can become of
leading order in the potential vorticity budget when
such regions of localized forcing are adjacent to a
boundary. Consequently, recirculating flows may di-
minish when the forcing is within the frictional
boundary layer and only the unidirectional flow into
(or out of ) the region remains. This unidirectional
flow component is that which compensates for the
mass loss/gain. The inviscid theory (Pedlosky 1996;
Spall 2000) gives the ratio of the recirculating flow
to that of sink as f 0 /bL, where f 0 is the Coriolis
frequency, b the meridional gradient of planetary vor-
ticity, and L the meridional scale of the sink. This
ratio, f 0 /bL k 1 at midlatitudes and for small-scale
sinks, such that the recirculating flow component is
much stronger than that compensating for the mass
loss/gain. Spall’s (2000) analytical solutions are in
agreement with primitive equation model results.
However, the one-dimensional (zonal) nature of these
analytical solutions precludes any conclusions in re-

gard to the behavior of b plumes when their merid-
ional scale is decreased, which is of particular interest
considering that the entrainment in the Mediterranean
overflow takes place over a distance on the order of
100 km (Baringer and Price 1997b), hence in a very
localized manner.

In the present study, we focus on determining the
ratio of recirculating and sinking transports of b plumes
as a function of two important physical parameters, the
meridional scale of the sink and the friction coefficient,
using two-dimensional analytical solutions of a steady,
linear, barotropic, quasigeostrophic model in which the
sink is placed at the eastern boundary of an ocean basin.
The present study, involving two-dimensional solutions
and focusing on the impact of friction on sinks at various
meridional scales, is a natural extension of the corre-
sponding section in the study by Spall (2000).

The paper is organized as follows: In section 2, linear
solutions of quasigeostrophic b plumes with bottom and
lateral dissipation are presented. The properties of these
solutions are discussed in section 3, with particular em-
phasis on the ratio of the recirculating flow to that of
sink. A stability analysis is carried out in section 4.
Finally, the results are summarized in section 5, and
recommendations for future studies are outlined.
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FIG. 2. Contours of the ratio of transport streamfunction c9H and total sink transport (contour interval: 1)
with bottom dissipation in a domain with dimensions of 2000 km 3 400 km in zonal and meridional directions,
respectively. Other parameters are u0 5 308N (b 5 2 3 10211 m21 s21), r 5 5 3 1028 s21 (d 5 2.5 km), x0

5 200 km (d 5 80). (a) L 5 400 km (l 5 160), (b) L 5 200 km (l 5 80), (c) L 5 100 km (l 5 40), and
(d) L 5 20 km (l 5 8).

2. Solutions for quasigeostrophic linear b plumes

We seek solutions to the equivalent-barotropic,
steady, linear, quasigeostrophic equation, in which en-
trainment is represented by potential vorticity forcing:

]c9 f0b 5 w9 1 D, (1)
]x9 H

where primes denote dimensional variables, c9(x9, y9)
is the streamfunction, f 0 the Coriolis frequency at a
reference latitude, b the meridional gradient of the plan-
etary vorticity, and H the depth of motion. The fluid
domain is (2` , x9 # 0) 3 (2` , y9 , 1`) where

x9 5 0 is the longitude of the eastern coast. The en-
trainment term is nonvanishing only over a zonal strip
and decays exponentially as follows:

x9 y9
w9(x9, y9) 5 W exp sin p and1 2 1 2x L0

w9(x9, y9) 5 0, for y9 , 0 and y9 . L, (2)

where W 5 w9(0, L/2), L is the meridional extent, and x0

the zonal e-folding scale of the forcing (Fig. 1). The dis-
sipation takes place either via bottom or lateral friction:

22r¹ c9 for bottom friction
D 5 (3)

451n¹ c9 for lateral friction,
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where r and n are the bottom and lateral friction co-
efficients, respectively, and ¹2 5 ]2/]x92 1 ]2/]y92 is
the Laplacian.

The primary difference of the above system of equa-
tions from those in Spall (2000) is that the above system
is two-dimensional as opposed to one-dimensional, and
we consider a continuously distributed forcing function
as opposed to a discontinuous one (i.e., step function).
However, the derivative in the y9 direction of the forcing
is discontinuous at y9 5 0 and y9 5 L.

a. Solution for bottom dissipation case

Introducing the following nondimensional variables,

f WL0(x9, y9) 5 L(x, y); c9 5 c; w9 5 Ww, (4)
bH

and substituting into (1), the nondimensional govern-
ing equation for the bottom dissipation case becomes

]c L ds 25 exp x sin(py) 2 ¹ c, (5)1 2]x x L0

where ds 5 r/b is the boundary layer scale due to bottom
friction.

Using separation of variables

c(x, y) 5 f(x) sin(py) (6)

and the homogeneous equation cx 5 2L21ds¹2c, the
equation for f becomes

2d f L df
21 2 p f 5 0, (7)

2dx d dxs

subject to the boundary conditions

f(2`) 5 0 and f(0) 5 0. (8)

Note that (8) is equivalent to imposing no net merid-
ional flow. The solution to (7), (8) is (e.g., Spiegel
1991)

2L L
2f(x) 5 exp 2 1 1 p x . (9)1 1 2 2[ ]!2d 2ds x

To solve for the inhomogeneous case, we set c 5 Aw
and substitute into (5) to find the amplitude A, and get

21
L d L ds s 2c 5 1 2 p w. (10)

2[ ]x x L0 0

Note that because of (2), (10) implies c(2`, y) 5 0.
The total solution for the bottom dissipation case be-

comes

21 2L d L d L L Ls s 2 2c(x, y) 5 1 2 p exp x 2 exp 2 1 1 p x sin(py). (11)
2 5 1 2 1 1 2 2 6[ ][ ] !x x L x 2d 2d0 0 0 s s

Introducing

L x0l 5 and d 5 (12)
d ds s

as the ratios of meridional and zonal scales of the sink
to the frictional boundary layer scale, respectively, (11)
is rewritten as

2 22d l l d d pd l
c(x, y) 5 exp x 2 exp 2 1 1 x sin(py). (13)

2 2 2 25 1 2 1 1 2 1 2 2 6[ ]!dl 1 l 2 d p d 2 2 l d

b. Solutions for lateral dissipation case

In this case, the nondimensional governing equa-
tion is

3
]c L dM 45 exp x sin(py) 1 ¹ c, (14)1 2 1 2]x x L0

where dM 5 (n/b)1/3 is the boundary layer scale due to
lateral friction. Using c(x, y) 5 f(x) sin(py), the equa-
tion for f becomes

3 4 2df L d d f d fM 2 45 exp x 1 2 2p 1 p f . (15)
4 21 2 1 2 1 2dx x L dx dx0

A special solution satisfying (15) is 5 A exp(L/x 0f̃
x), and substituting in to find the amplitude A, we
obtain

213 4 2L d L L LM 2 4f̃ 5 2 2 2p 1 p exp x . (16)
4 21 2 1 2 1 2[ ]x L x x x0 0 0 0

The general integral of the homogeneous form of (15)
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is the superposition of terms of the kind exp(lx),
where the algebraic equation for l can be written as

3
dM 2 2 2l 5 (l 2 p ) . (17)1 2L

Defining F(l) 5 [l2 2 p2]2 and expanding around p
up to second order in l, F(l) ø 4p2(l 2 p)2, and Eq.
(17) is approximated by

3
dM 2 2l 5 4p (l 2 p) . (18)1 2L

Setting
3L 1

e 5 , (19)
21 2d 4pM

we obtain

2
e e

l 5 p 1 6 pe 1 . (20)6 1 2!2 2

Note that
2 2 2

e e e
2pe 1 5 p 1 2 p , p 1 ,1 2 1 2 1 22 2 2

so both roots l1 and l2 are positive.

Defining for convenience
213 4 2L d L LM 2 4N 5 2 2 2p 1 p , (21)L 4 21 2 1 2[ ]x L x x0 0 0

the total solution for f can be written as

L
f 5 N exp x 1 C exp(l x) 1 C exp(l x). (22)L 1 1 2 21 2x0

No mass-flux boundary condition at the eastern
boundary x 5 0 demands that

N 1 C 1 C 5 0.L 1 2 (23)

At this point, boundary conditions in addition to no
mass flux are needed to solve for C1 and C2. We consider
the following no-slip boundary condition. (The solution
for free-slip boundary condition is straightforward, and
it is not shown here.)

Imposing [df/dx]x50 5 0, we find from (22)

L
N 1 C l 1 C l 5 0. (24)L 1 1 2 2x0

From (23) and (24) we solve for C1 and C 2 to find
the expression of f, and the total solution for c be-
comes

 L L
l 2 l 221  3 2 14 2L d L L L x x M 0 02 4c(x, y) 5 2 2 2p 1 p exp x 1 exp(l x) 2 exp(l x) sin(py). (25)1 2 4 21 2 1 2 1 2[ ]x L x x x l 2 l l 2 l0 0 0 0 1 2 1 2 

Introducing

L x0l* 5 and d* 5 (26)
d dM M

as the ratios of meridional and zonal scales of the sink
to the frictional boundary layer scale, respectively, (25)
is rewritten as

 l* l*
l 2 l 2 2 13 4l* d* l* d* d* 

c(x, y) 5 exp x 1 exp(l x) 2 exp(l x) sin(py). (27)1 2 4 3 4 2 2 2 4 4 1 2l* d* 2 l* 1 2p l* d* 2 p d* d* l 2 l l 2 l1 2 1 2 

However, solution (27) does not work when

2 32L L L
22 p 5 , (28)

21 2 1 2x d x0 M 0

since this is where NL has a pole. In order to find the
solution at this pole, we seek for a solution of the
kind

L
f(x) 5 Nx exp x . (29)1 2x0

Substitution of (29) into (15) yields

3 4 2L L L L
2N 4 1 x 2 2p N 2 1 x

3 4 21 2 1 2x x x x0 0 0 0
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3 3L L L
42 N 1 1 x 1 Nxp 5 2 . (30)1 2 1 2 1 2d x dM 0 M

Hence

3 33L L L L
2N 4 2 4p 2 5 2 and (31)

3 1 2 1 2[ ]x x d d0 0 M M

34 2L L L L
2 4N 2 2p 2 1 p 5 0. (32)

4 2 1 2[ ]x x d x0 0 M 0

From (31)

3L1 2dM

N 5 , (33)
3 3L L L

21 4p 2 41 2 1 2d x xM 0 0

while (32) implies

2 32L L L
22 p 5 ,

21 2 1 2x d x0 M 0

which is identically satisfied by (28). Therefore, the so-
lution at the pole can be written as

L
f 5 Nx exp x 1 D exp(l x) 1 D exp(l x), (34)1 1 2 21 2x0

where N is given by (33). Applying f(0) 5 0, no flow,
and [df/dx]x50 5 0, no-slip conditions to find the con-
stants D1 and D2, the total solution in (d*, l*)-space
becomes

3 3l* d*
c(x, y) 5

3 3 2 2 3l* d* 1 4p l*d* 2 4l*

l* exp(l x) 2 exp(l x)2 13 x exp x 11 2[ ]d* l 2 l1 2

3 sin(py), (35)

which is valid at the pole given by (28).

3. Properties of solutions

a. Circulation patterns

Typical circulation patterns corresponding to b
plumes are illustrated in Fig. 2. In these solutions, the
domain shown has dimensions of 2000 km 3 400 km
in the zonal and meridional directions, respectively. The
sink is located at 308N (b 5 2 3 10211 m21 s21) and
has a zonal e-folding scale of x0 5 200 km. The bottom
friction parameter is r 5 5 3 1028 s21. Therefore, the
frictional boundary layer scale d 5 2.5 km, and the
nondimensional parameter d 5 80. Since d k 1, the
gyres are not affected by friction due to the eastern
boundary, based on the results by Spall (2000). The

total sink transport is kept constant. Contours of the
ratio of transport streamfunction c9H and total sink
transport are shown as a function of the meridional ex-
tent L (or nondimensional parameter l). All solutions
(Figs. 2a–d) exhibit the same qualitative behavior: an
anticyclonic (cyclonic) recirculation for W . 0 (W ,
0) or a bidirectional flow pattern (westward in the south
and eastward in the north for W . 0 or opposite for W
, 0), with a meridional extent of L, as discussed in
detail in previous studies (e.g., Pedlosky 1996; Spall
2000). In Fig. 2, both branches carry the same transport
due to the neglect of the divergent component by de-
fining a streamfunction in the quasigeostrophic formal-
ism. In agreement with previous work, the ratio of the
maximum recirculating transport to the total sink trans-
port initially increases with decreasing L: 12, 21, and
28 for L 5 400 km, 200 km, and 100 km (l 5 160, 80,
and 40), respectively (Fig. 2a–c), indicating generation
of horizontal circulation with a strength O(10) higher
than that of the sink. The result of interest appears when
the meridional extent of the forcing is reduced. Fur-
thermore, the ratio of the maximum recirculating trans-
port to the total sink transport decreases to 17 for L 5
20 km (l 5 8) as shown in Fig. 2d. Therefore, there
appears to be a regime when the strength of the recir-
culation is damped by frictional processes. Similar be-
havior applies to the lateral friction case as well.

b. Relative strengths of recirculation and upwelling

The behavior of the solutions in a wide parameter
space is explored with emphasis on the ratio of the
strengths of horizontal recirculation to that of upwelling
(sinking). To this end, we define the transport due to
upwelling, S, as follows:

1` 0

S [ w9(x9, y9) dx9 dy9, (36)E E
2` 2`

and using the dimensional upwelling function (2),

2
S 5 Wx L. (37)0p

The solution for the bottom dissipation case (13) can
be rewritten as

f WL d d 10c9 5
bH l (1 1 d 1 B) (1 2 B)

l l
3 exp x 2 exp B x sin(py), (38)5 1 2 1 26d d

where

2 2d pd d
B 5 1 2 (39)1 2 1 2! 2 l 2

is defined, for convenience, as a nonlinear combination
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FIG. 3. The ratio of maximum recirculation strength to that of
upwelling, R/S (contour interval: 3), as a function of the bottom
friction coefficient, r, and meridional scale of the sink, L, for u0 5
308N and x0 5 200 km. The circles along the right vertical axis mark
the parameters of the circulation patterns shown in Fig. 2. The dashed
line corresponds to B 5 1 (B . 1 below this line and B , 1 above
this line).

of l and d. The maximum transport of the recirculation
gyre is

R [ c9(x 5 x , y 5 1/2)H,max (40)

where xmax is the zonal distance from the eastern bound-
ary, at which the strength of the recirculation is maxi-
mum. To find xmax,

d 1
c9 x, 5 01 2[ ]dx 2

yields

d lnB
x 5 . (41)max l 1 2 B

From (40), (38), and (41), we obtain

f WL d d 10R 5
b l (1 1 d 1 B) (1 2 B)

lnB lnB
3 exp 2 exp B . (42)5 1 2 1 261 2 B 1 2 B

From (37) and (42), the ratio of the transports of max-
imum recirculation to upwelling is then given by

R p f d 105
S 2 bL (1 1 d 1 B) (1 2 B)

lnB lnB
3 exp 2 exp B . (43)5 1 2 1 261 2 B 1 2 B

The behavior of R/S is first discussed as a function
of dimensional physical parameters, and then general-
ized using nondimensional parameters. The dependence
of R/S on two important physical parameters, the me-
ridional scale of upwelling, L, and the friction coeffi-
cient, r, is shown in Fig. 3 for a sink located at 308N
and with a zonal e-folding scale of x0 5 200 km (same
as in Fig. 2). The parameter range covered in Fig. 3 is
0 # L # 2000 km and 5 3 1028 s21 # r # 5 3 1024

s21 (or as plotted 2 3 103 s # r21 # 2 3 107 s). This
figure indicates that when the friction coefficient is high
(left-hand side of Fig. 3), R/S has small values, which
is quite intuitive. The ratio R/S increases as the friction
coefficient is reduced (right-hand portion of Fig. 3) and
becomes asymptotically independent of the friction co-
efficient. In this regime (right-hand portion or right ver-
tical axis of Fig. 3), two different kinds of behavior are
clear. (The parameters of the circulation patterns shown
in Fig. 2 are marked by circles in Fig. 3.) for large L,
for example, L 5 O(100–1000 km), R/S increases as L
decreases, ranging from R/S , 3 for L ø 2000 km to
a maximum of R/S ø 30 for L ø 100 km. When the
meridional scale of the sink is reduced further, R/S de-
creases with L, that is, it appears that R/S → 0 when L
→ 0. The dividing line between this reversal of behavior
as a function of L is shown by the dashed line in Fig.
3 and is governed by B 5 1 with R/S being inversely

related to L when B , 1 and R/S behaving in the same
sense as L when B . 1.

The sensitivity of R/S to the remaining important
physical parameter, x0, is as follows (not shown): as x0

decreases, R/S increases, and the critical line B 5 1
moves toward smaller L. This indicates, physically, that
when the sink is zonally localized near the eastern
boundary, the resulting recirculating flow strength is
higher than the case in which the sink is distributed over
a larger zonal distance from the eastern boundary.

The inviscid solution is obtained when r → 0 and for
B , 1, d → 1`. Hence, exp[ln(B)/(1 2 B)] → 0 and
exp[Bln(B)/(1 2 B)] → 1. Therefore, from (43),

R R p f05 lim → . (44)1 2S S 2 bLr→00

This result is in approximate agreement with (R/S)0 5
f 0/bL resulting from the scaling analysis of inviscid
equations (Pedlosky 1996; Spall 2000). The propor-
tionality factor, p/2, appears to be the ‘‘shape factor’’
due to forcing function.

Normalizing R/S in (43) by the inviscid solution (44),
we get

(R /S) d 1
5

(R /S) (1 1 d 1 B) (1 2 B)0

lnB lnB
3 exp 2 exp B . (45)5 1 2 1 261 2 B 1 2 B
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FIG. 4. Normalized ratio of maximum recirculation strength to that
of upwelling, (R/S)/(R/S)0 as a function of d and l (contour interval:
0.1) for the bottom dissipation case. The circles mark the parameters
of the circulation patterns shown in Fig. 2 (d 5 80, l 5 160, 80, 40,
8). The dashed line corresponds to B 5 1.

The rhs of (45), when different from unity, quantifies
the effect of friction on the recirculating flow. The quan-
tity (R/S)/(R/S)0 is plotted as a function of nondimen-
sional parameters d and l in Fig. 4, which illustrates the
behavior of the b-plume system in the entire parameter
space. First, we note that when d , O(1), (R/S)/(R/S)0

→ 0. This regime corresponds to the case when the sink
is zonally localized very close to the eastern boundary
and is damped by friction. This is the case considered
in detail by Spall (2000). Outside of this regime [d k
O(1)], when l → `, (R/S)/(R/S)0 → 1; hence the fric-
tional effects are small and the inviscid solution is re-
covered. For small l, friction becomes important and (R/
S)/(R/S)0 , 1. As l → 0, the recirculation diminishes,
particularly after crossing the B 5 1 line (shown by
dashed line; parameters of the circulation patterns
shown in Fig. 2 are also marked). This is the new regime
introduced in the present study.

The limiting behavior of (R/S)/(R/S)0 for d → 0 and
l → 0 is formally shown by rewriting (45) as

2(R /S) dl
5

2 2 2 2(R /S) (dl 1 l 2 p d )0

lnB lnB
3 exp 2 exp B , (46)5 1 2 1 261 2 B 1 2 B

and considering the trajectory l 5 md on the (d, l) plane,
with m . 0. Substitution yields

2 3(R /S) m d
5

2 3 2 2 2 2(R /S) (m d 1 m d 2 p d )0

˜ ˜lnB lnB˜3 exp 2 exp B , (47)˜ ˜5 1 2 1 261 2 B 1 2 B

where B̃ 5 2 d/2.2 2Ï(d/2) 1 (p/m)
First, we consider the case with m ± p. In this case

2m d p˜lim 5 0 and lim B 5 .
2 2 2(m d 1 m 2 p ) md→0 d→0

Hence, on the whole,

R /S
lim 5 0. (48)

(R /S)d→0 0

In the case with m 5 p,

2 3m d ˜lim 5 1 and lim B 5 1,
2 3 2 2 2 2(m d 1 m d 2 m d )d→0 d→0

and after a few manipulations

˜ ˜lnB lnB˜lim exp 2 exp B 5 0,˜ ˜5 1 2 1 261 2 B 1 2 Bd→0

and therefore we arrive again at (48).
The upward sloping of (R/S)/(R/S)0 contours for high

values of d (Fig. 4) is due to the fact that the sink
becomes distributed over a large zonal distance (rather
than becoming gradually more distant from the eastern
boundary), and therefore the recirculation intensity de-
creases for a fixed l. It is a consequence of the sink
function (2).

Finally, (R/S)/(R/S)0 is plotted for the lateral dissi-
pation solutions as well, as a function of nondimensional
parameters d* and l* in Fig. 5. Figure 5a shows (R/S)/
(R/S)0 contours based on the solution given in (27). As
discussed before, this solution has singularity when (28)
is satisfied, while the behavior elsewhere is qualitatively
similar to that from the bottom dissipation case. Figure
5b shows (R/S)/(R/S)0 contours from the solution given
in (35), which remains finite where (27) has singularity.

c. Westward penetration distance

An interesting feature of the b-plume solutions shown
in Fig. 2 is their westward penetration distance. The b
plumes in Figs. 2a, b clearly extend far beyond the zonal
extent of the domain shown here (2000 km), whereas
the one in Fig. 2c has approximately the same extent
as the domain and that in Fig. 2d extends only few
hundred kilometers westward. To investigate this issue,
we define the westward penetration distance of the b
plume as the distance from the eastern boundary along
y 5 1/2 at which the strength of the recirculating trans-
port becomes negligible with respect to the maximum
transport, that is,
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FIG. 5. Normalized ratio of maximum recirculation strength to that
of upwelling, (R/S)/(R/S)0 as a function of d* and l* for the lateral
dissipation case (a) from solution (27) and (b) from solution (35)
(contour interval: 0.1).

FIG. 6. Log of westward penetration distance, log10(2 ), where9xp

5 xpL is in meters, as a function of the bottom friction coefficient,9xp

r, and meridional scale of the sink, L, for u0 5 308N and x0 5 200
km (contour interval: 0.1). The circles mark parameters of the cir-
culation patterns shown in Fig. 2.

1
c x ,p1 22

5 «, (49)
1

c x ,max1 22

where xp is the westward penetration distance and « is
a small value.

We find that (49) is difficult to solve analytically, and
therefore (49) is solved numerically for xp. Figure 6

shows log10(2 ), where 5 xpL is in meters, as ax9 x9p p

function of L and r for x0 5 200 km and u0 5 308N
(i.e., as in Fig. 2). The sensitivity parameter is taken as
« 5 0.05 (i.e., 20 contour lines) to be able to make a
direct comparison to Fig. 2. Obviously, westward pen-
etration distance becomes higher for smaller values of
«; however, our objective is to gain insight into the
qualitative behavior of xp. Figure 6 indicates, quite in-
tuitively, that westward penetration distance decreases
(increases) as the meridional sink scale L decreases (in-
creases) and as the bottom friction coefficient r increases
(decreases). For the parameters of the circulation pat-
terns shown in Figs. 2a–d, ø 2107.3 m ø 220 000x9p
km for r 5 5 3 1028 s21 and L 5 400 km, ø 2106.75x9p
m ø 25600 km for L 5 200 km, ø 2106.25 m øx9p
21800 km for L 5 100 km, and ø 2105.85 m øx9p
2700 km for L 5 50 km.

Finally, another quantity of interest, xmax, the distance
from the eastern boundary at which the maximum re-
circulating transport is reached, is plotted from (41).
Figure 7a illustrates dimensional 5 xmaxL plottedx9max

as a function of L and r (and for selected parameters,
x0 5 200 km and u0 5 308N, as before) and indicates
that the maximum recirculation point moves closerx9max

to the eastern boundary as the meridional sink scale L
decreases and as the bottom friction coefficient r in-
creases. For the parameters of the circulation patterns
shown in Figs. 2a–d, ø 2715, 2475, 2275, andx9max

250 km, respectively. (The resemblance between Fig.
7a and Fig. 6 seems to imply a simple relation between
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FIG. 7. The location of the maximum recirculating transport. (a)
Dimensional 5 xmaxL (contour interval: 50 km) as a function of9xmax

the bottom friction coefficient, r, and meridional scale of the sink,
L, for u0 5 308N and x0 5 200 km. The circles mark parameters of
the circulation patterns shown in Fig. 2. (b) Nondimensional xmax

(contour interval: 0.3) as a function of d and l. The solid line marks
B 5 1.

and .) Finally, xmax is plotted also in nondimen-x9 x9max p

sional (d, l) space in Fig. 7b, which indicates that xmax

→ 0, as d → 0 and also as l → 0, after crossing the B
5 1 line. The plots for xmax and xp for the lateral dis-
sipation case are qualitatively similar to those shown
for the bottom dissipation case.

4. Stability analysis
The bidirectional jets forming the b plume are likely

to be unstable due to strong shears when the meridional

extent of the forcing becomes small. In this section, we
conduct a stability analysis to determine the parameter
regime, in which the b plumes are candidates for in-
stability.

We consider flows far away from the region of po-
tential vorticity forcing under the assumption that x0 is
sufficiently small, and therefore the following ‘‘asymp-
totic’’ solutions apply for x K 0.

For the bottom dissipation case, the solution far from
the source is approximated by

2l l
2c ø c } sin(py) exp 2 1 1 p x , (50)b f 1 1 2 2[ ]!2 2

and for the lateral dissipation case, the asymptotic so-
lution becomes

c ø cl f

2
e e

} sin(py) exp p 1 2 pe 1 x . (51)1 1 2 2[ ]!2 2

Note that the quantity within parentheses in (51) is l2

from (20). We also point out that the dynamic boundary
conditions (no-slip or free-slip) are not important away
from the boundary, hence not in the above asymptotic
solution.

The common feature of the asymptotic solutions (50)
and (51) is that

2 2¹ c 5 2a c (52)

for suitable values of a. That is to say, from (50), we
have

2l l
2 2¹ c 5 l 2 1 p c , (53)b f b f1 2[ ]!2 2

while from (51) we have

2 2e e e
2¹ c 5 2 pe 1 pe 1 2 p 1 c . (54)l f l f1 2[ ]! !4 4 2

The terms inside the square brackets appearing in (53)
and (54) are identically negative, such that the relative
vorticity is negatively correlated with the corresponding
streamfunction in both asymptotic solutions. Note that
(52) trivially gives

2]¹ c
, 0, (55)

]c

which is an immediate consequence of (53) and (54).
The inequality (55) naturally leads us to resort to the
instability theory developed by Pedlosky (1987). In or-
der to apply this instability theory, a scaling analysis of
the governing equations is needed to determine whether
(52) is satisfied to some lowest-order approximation. To
this end, we consider the following steady equations,
which now include the inertial terms:
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]c9 f02 2J(c9, ¹ c9) 1 b 5 w9 2 r¹ c9 or (56)
]x H

]c9 f02 4J(c9, ¹ c9) 1 b 5 w9 1 n¹ c9. (57)
]x H

Equations (56) and (57) are nonlinear versions of (1).
Introducing the nondimensional variables defined in (4),
we get

2 2b L H ]c ds2 2J(c, ¹ c) 5 w 2 2 ¹ c or (58)1 2f W ]x L0

32 2b L H ]c dM2 4J(c, ¹ c) 5 w 2 1 ¹ c . (59)1 2[ ]f W ]x L0

We point out that both the lhs (Jacobian) and the rhs of
(58) and (59) are satisfied separately by the asymptotic
solutions (50) and (51). Therefore, (50) and (51) satisfy
the entire equations (58) and (59), respectively. The
necessary conditions for instability, that is, for (55) to
hold, are

32 2b L H d ds M
K 1 and K 1 or K 1. (60)1 2f W L L0

If inequalities (60) are fulfilled, the leading vorticity
equation is simply J(c, ¹2c) 5 0, where c satisfies
(52). Thus, c is candidate to instability. The inequality
b2L2H/ f 0W K 1 implies by* K z*, and hence a marked
meridional gradient of relative vorticity, associated with
the sinusoidal form of c [see (50) and (51)], which
favors barotropic instability. Moreover, inequalities ds/
L K 1 and (dM/L)3 K 1 indicate that dissipation is
sufficiently weak to make the damping timescale too
short to control the growth rate of the perturbation.

In order to give an example, we seek to determine L
and friction coefficients r and n, for which b plumes
can become unstable. Using (37), the conditions (60)
can be rewritten as

1/3 1/3
p f S p f Sb0 0L K and r K or

2[ ] [ ]2b x H 2x H0 0

p f S0n K . (61)
2bx H0

Substituting f 0 5 7.3 3 1025 s21, b 5 2 3 10211 m21

s21 and x0 5 200 km, and taking reasonable values for
S 5 1 Sv and H 5 1000 m, the conditions necessary
for instability become in this case

26 21L K 100 km and r K 2 3 10 s or
4 2 21n K 3 3 10 m s . (62)

5. Discussion and conclusions

In light of recent evidence that the entrainment of
Atlantic water into the Mediterranean overflow may lead

to the formation of the Azores Current and the Azores
Countercurrent (Jia 2000; Özgökmen et al. 2001), the
dynamics of b plumes driven by a sink of mass located
at the eastern boundary of an ocean basin are investi-
gated. The study is conducted by solving analytically
the simplest possible governing equation of oceanic
flow, the equivalent-barotropic, linear, steady quasigeo-
strophic equation, in which the sink of mass is repre-
sented by a source of potential vorticity, an approach
that is justified based on the numerical experiments by
Özgökmen et al. (2001). The objective of this study is
to quantify the parameter regime in which friction be-
comes an important factor in the dynamics of b plumes.
The present effort can be considered as a natural ex-
tension of the study by Spall (2000), in which the impact
of friction on the b plumes was investigated using one-
dimensional analytical solutions of quasigeostrophic
equation and numerical experiments. The quasigeo-
strophic solutions in Spall (2000) compared well with
the primitive equation numerical model solutions, lend-
ing credibility to the use of quasigeostrophic dynamics
to describe the boundary layer structure.

By scaling the ratio of the strength of the recirculation
and the strength of the sink (R/S), by that from the
inviscid solution (R/S)0, the regimes are identified in
which friction becomes a dominant factor: (R/S)/(R/S)0

is plotted as a function of d and l, the zonal and me-
ridional scales of the sink, divided by the frictional
boundary layer scale. It is confirmed that friction be-
comes an important factor and reduces the strength of
the recirculating flow when d , O(1), as found by Spall
(2000). The primary new finding of this study is that
the recirculating flow component disappears due to fric-
tional effects also when the meridional extent of the
sink becomes small. However, unlike for the zonal ex-
tent of the sink, which affects the recirculating com-
ponent only if it is on the order of the frictional bound-
ary layer scale, the deviation of the recirculating flow
strength from that given by the inviscid solution is ap-
parent for meridional sink scales, which are much larger
than the frictional boundary layer scale, or for l 5
O(10). We also quantify the location of the maximum
recirculation and westward penetration distance of the
plumes in the parameter space. A stability analysis is
conducted to determine the parameter regime in which
the b plumes are candidates for instability.

Finally, we outline the various simplifications in the
system considered in this study and recommendations
for future studies. First, separation of variables (6) does
not permit meridional widening of b plumes toward the
west. Second, only steady solutions are considered in
the present study, and the model can be extended to
incorporate time-varying behavior due to fluctuations in
the forcing. The third and probably most important fac-
tor that needs to be addressed via numerical simulations
is the effect of nonlinear inertial terms. Some of the
other important factors, such as the effects of stratifi-
cation and bottom topography on b plumes, have been
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investigated in detail by Spall (2001) using a two-layer,
planetary geostrophic model with a sloping bottom. One
of the findings of Spall (2001) relevant to the present
study and to that by Özgökmen et al. (2001) is that the
upper-layer flow is not very sensitive to the presence of
topography, but the deep b plume is eliminated.
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Käse, R. H., and G. Siedler, 1982: Meandering of the subtropical
front south-east of the Azores. Nature, 300, 245–246.

——, and W. Krauss, 1996: The Gulf Stream, the North Atlantic
Current, and the origin of the Azores Current. The Warmwater-
sphere of the North Atlantic Ocean, W. Krauss, Ed., Gebrüder
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Özgökmen, T. M., E. P. Chassignet, and C. G. H. Rooth, 2001: On
the connection between the Mediterranean outflow and the
Azores Current. J. Phys. Oceanogr., 31, 461–480.

Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 617–623.
——, 1996: Ocean Circulation Theory. Springer, 405–408.
Spall, M., 2000: Buoyancy-forced circulations around islands and

ridges. J. Mar. Res., 58, 957–982.
——, 2001: Large-scale circulations forced by localized mixing over

a sloping bottom. J. Phys. Oceanogr., 31, 2369–2384.
Spiegel, M. R., 1991: Mathematical Handbook of Formulas and Ta-

bles. McGraw-Hill, 105 pp.
Stommel, H., 1982: Is the South Pacific helium plume dynamically

active? Earth Planet. Sci. Lett., 61, 63–67.


